Unified English Braille
For Math

For Sighted Learners

By Heather Harland
& Cheryl Roberts
UEB Braille for Math

Previously braille readers used the Nemeth code for math and literary braille code numbers for most other things. With the implementation of UEB, numbers will remain the same regardless of subject and are positioned in the upper section of the braille cell.

Braille numbers are written by putting a number sign in front of the first 10 letters of the alphabet.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

Examples: 359 1472 9,804

Math Symbols

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>×</td>
<td>÷</td>
<td>=</td>
</tr>
</tbody>
</table>

dots 5, 2-3-5 dots 5,3-6 dots 5, 2-3-6 dots 5, 3-4 dots 5, 2-3-5-6

Note:

- The number sign must appear before each number. The number sign no longer carries through a hyphen or equation.
- The addition, subtraction, multiplication, division and equal sign are two cells each. For young students, there is a space before and after each of these math symbols (Manitoba Variation).

Examples:

50+10 = 60

3×8=24

17+12 = 29
92 - 68 = 24
51 ÷ 3 = 17
25 x 4 = 100

PRACTICE 1 – Interline the following.

PRACTICE 2 - Braille the following.

2 - 1 = 1 7,500 - 500 = 7,000
6 ÷ 3 = 2 24 ÷ 6 = 4
3 x 7 = 21 2 x 9 = 18
25 + 9 = 34 4 + 10 = 14
Decimals

The Decimal is now represented with dots 2-5-6, the same as a period.

1.25

I need 2-3.5 cups of flour.

.8 is a decimal between 0-1.

Dollar Sign

The Dollar Sign is represented with dots 4, 2-3-4.

$3.45 US$
Spatial Addition

Decimals (dots 2-5-6) must be lined up.

Numbers are always lined up to the right unless there is a decimal; number signs are lined up on the left.

Operations symbols (+ - x etc) can appear to the immediate left of the last listed number, or at the top right or left of the top number with one empty cell between. When you are brailleing for your student, choose the placement they prefer, and use it consistently.

Separator lines extend the length of the numbers, dots 5, 2-5.

A line is often left as room to indicate carry over between the question and the answer.

When you braille math for your student, you only need to braille the basic question, without the separation line. Your student will add the separation line, additional lines and answer as they work through the question.

i.e.

\[\begin{array}{c}
\text{+ 35} \\
\text{12} \\
\text{= 47}
\end{array}\]
Spatial Subtraction with Cancellations/Borrowing

On the braille page, the question appears like this:

```
- 8256
- 2347
- 1 1
---
5909
```

The student adds the borrowing indicators, separation line and answer.

In UEB, a note is made below the question, above the answer to indicate borrowing. As the user advances to each place value, they will need to check for a borrowing indicator and subtract, if required.
Spatial Multiplication

Should it not be practical to place number signs in front of every number in a spatial layout, numeric passage indicators may be used to show that the following selection is entirely numbers. Spatial multiplication and division will often use numeric passage indicators.

Numeric Passage Indicator

Numeric Passage Indicator Terminator

A line or more is left between the question and the answer as room to indicate carry over as a result of multiplying.

2704 x

12

line for carryover when multiplying the 2
line for carryover when multiplying the 1

5408

2704

1 _____ carry over from addition

32448
8

\[
\begin{array}{c}
\text{x } 2312 \\
65 \\
1 1 \\
1 1 \\
\hline
11560 \\
13872 \\
11 \\
\hline
150280
\end{array}
\]

carryover when multiplying the 5
carryover when adding
Spatial Division

Method 1

\[
\begin{array}{c|c|c}
\hline
5 & 465 & 93 \\
- & 45 & 15 \\
\hline
& & 15 \\
\hline
& & 15 \\
\hline
& & 0 \\
\end{array}
\]

Ans: 93

Method 2

\[
\begin{array}{c|c|c}
\hline
5 & 465 & 9 \\
- & 45 & 15 \\
\hline
& & 3 \\
\hline
& & 0 \\
\end{array}
\]

Ans: 93
PRACTICE 3 – Interline the following.

PRACTICE 4 – Braille the following. Braille the operation signs at the top left of the question.
Omitted Numbers

An Omission mark shown as an underscore is represented by dots 4-6, 3-6 The underscore will be the most common form of omission you will likely see in classroom materials.

PRACTICE 5 - Braille using the underscore.

5 + 8 = __ 10 x __ = 50 __ - 5 = 92
12 - 2 = __ 8 + __ = 15 __ x 6 = 24

PRACTICE 6 - Interline the following.

\[\begin{array}{llll}
\cdot & \cdot & \cdot & \cdot \\
\end{array} \]
Fractions

The Simple Fraction Line is represented with dots 3-4. :

\[
\frac{5}{8} \text{ of the class are boys.}
\]

\[
\frac{11}{2} \text{ boys}
\]

A mixed number is considered like “two numbers” for use of the number sign.

I need 2½ cups of flour.

\[
2 \frac{1}{2} \text{ cups of flour}
\]

When a fraction is written in a linear fashion, an ordinary slash mark (an oblique stroke) is used, dots 4-5-6, 3-4, and a second number sign is added after the oblique stroke.

\[
3/8 \text{ of the class are girls.}
\]
Any fraction more complicated than the previous examples or which includes letters or words requires the use of a General Fraction Line instead of a simple fraction line and General Fraction Opening and Closing Indicators. General Fraction Indicators can be confused with the contractions for “of” or “with” so as you braille for your student, consider whether you will need one or more grade 1 indicator at the beginning of a fraction containing letters.

General Fraction Line, dots 4-6, 3-4.

General Fraction Open indicator, dots 1-2-3-5-6

General Fraction Close indicator, dots 2-3-4-5-6

\[\frac{x}{y} \quad \frac{1}{x} \quad \frac{3}{b} \]

\[
\text{distance} \quad \text{time} \\
\]

If a number sign immediately follows the General Fraction Open Indicator only one Grade 1 Indicator is needed at the beginning to designate that this passage is dealing with numbers and uncontracted braille.

Two Grade 1 Indicators means the whole word should be read as uncontracted braille.

One Grade 1 Indicators means only the next cell should be read as uncontracted braille.
Spatial Fractions

These are examples of fractions aligned spatially.

These are examples of fractions aligned spatially.

This is a spatial fraction. This format can be very useful when a student is first learning.
PRACTICE 7 – Interline the following.

PRACTICE 8 – Braille the following.

2 x 8 fun 1 23 9/16
3 b x work z 100
Exponents/Superscripts

An exponent or superscript has a special symbol in front of it so the braille reader knows that it is "up in the air." That symbol is written using dots 3-5 followed by the number.

If the symbol is following a letter, a grade 1 indicator is needed to ensure that the letter and indicator are not read as a word. e.g. read as \(\text{b}\text{n2} \) instead of \(b^2 \)

\[
5^2 \quad x^2
\]

Subscript

Subscript is represented with dots 2-6.

As with superscripts, if the subscript symbol follows a letter, a grade 1 indicator is needed to ensure the letter and indicator are not read as a word. e.g. read as \(\text{H}\text{n2O} \) instead of \(\text{H}_2\text{O} \)

\[
\text{H}_2\text{O} \quad \text{CO}_2
\]
Algebra

Parenthesis
Opening (Closing

\[a(1+3) = 8 \]

Grade 1 Indicators are used to specify letters instead of numbers or contractions when a letter stands alone or when the letters a-j follow a number.

\[y = x+4c \]

\[\frac{x^2 + 2x}{1 + x^2} = 1 \]

The Grade 1 Passage Indicator (dots 5-6, 5-6, 5-6) can be used to indicate that a passage should be read entirely as uncontracted braille, that is, letter for letter. The specified passage ends when the reader encounters dots 5-6, 3. This symbol represents the Grade 1 passage terminator.

| dots 5-6 | The Grade 1 Passage Indicator means the whole passage should be read as uncontracted braille. |
| dots 5-6 | This symbol is used to end the effect of the grade 1 passage indicator. The passage is finished. |
Algebra - Putting it all together

Example:

EXAMPLE 6. Factor $12x^2 + 7xy - 10y^2$.

The plus, minus, and equals signs are shown in red. The superscript indicator is shown in green.

Grade 1 passage indicator is used in this example:

$$3x - 4y + y^2 = x^2$$
UEB Braille Notes

<table>
<thead>
<tr>
<th>Operation</th>
<th>Braille Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition +</td>
<td>dot 5, 2-3-5</td>
</tr>
<tr>
<td>Subtraction -</td>
<td>dot 5, 3-6</td>
</tr>
</tbody>
</table>
| Division | Linear: \(\div \)
 | dot 5, 3-4 |
 | Spatial: \(\overline{\text{dot 5, 3-4}} \) |
| Multiplication \(\times \) | dot 5, 2-3-6 |
| Equals = | dot 5, 2-3-5-6 |
| Separation line | dot 5, 2-5 |
| Omission | Underscore ______ |
| | dots 4-6, 3-6 |
| Fraction lines | Simple dots 3-4 |
| General Fraction| |
| indicators | Opening |
| | Closing |
| Grade 1 Indicator| Symbol |
| dots 5-6 | Word |
| | Passage |
| | Terminator |
| Parenthesis | Opening (dots 5, 1-2-6 |
| | Closing) dots 5, 3-4-5|
| Superscripts, Exponents & Subscripts | Superscript & Exponents |
| | Subscript |
| Greater than > | dot 4, 1-2-6 |
| Less than < | dot 4, 3-4-5 |
ANSWERS

PRACTICE 1 – Interline the following.

5 ÷ 1 = 5
6-3 = 3

15÷3= 5

1,200 + 45 = 1,245

16+6 = 22
4-4=0

5x3 = 15

PRACTICE 2 - Braille the following.

2 - 1 = 1

7,500-500=7,000

6÷3=2
24÷6=4

3 x 7 = 21
2x9 = 18

25+9=34
4+10=14
PRACTICE 3 – Interline the following.

\[
\begin{array}{ccc}
18 & + 22 & 35 \\
6 & \text{-} & 6 \\
11 & 16 & 6
\end{array}
\]

\[
\begin{array}{ccc}
55 & \times 23 & 138 \\
4 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
40 & 16 & 245 \\
5 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
55 & \div 5 & 245 \\
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
55 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
40 & 16 & 245 \\
5 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
55 & \div 5 & 245 \\
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
15 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
0 & \text{----} & 5
\end{array}
\]

\[
\begin{array}{ccc}
0 & \text{----} & 5
\end{array}
\]
PRACTICE 4 – Braille the following.

\[
\begin{array}{cccc}
26 & 43 & 98 & 4)_{12} \\
\times 15 & +85 & -64 & \hline \\
\end{array}
\]

PRACTICE 5 - Braille using the underscore.

5 + 8 = ___

10 x ___ = 50

___ - 5 = 92

12 - 2 = ___

8 + ___ = 15

__ x 6 = 24

PRACTICE 6 - Interline the following.

3 ___ 7 = 10

5 + 11 = ___

46 - 25 = ___

26 ÷ ___ = 8

___ x 8 = 72
PRACTICE 7 – Interline the following.

\[
\begin{array}{cccc}
1 & 3 & 1 \frac{1}{2} & x \\
3 & 5 & & x^2 \\
\end{array}
\]

\[
\begin{array}{cccc}
2/10 & 2 & \text{money} & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{c} & \text{time} & \\
\end{array}
\]

Practice 8 – Braille the following.

\[
\begin{array}{cccc}
2 & x & 8 & \\
3 & b & x & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{or} & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{fun} & 1 & 23 & \\
\text{work} & z & 100 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{or} & \\
\end{array}
\]

9/16